Skip to main content
Log in

Effect of SiO2 and BaO/CaO Mass Ratio on Structure and Viscosity of B2O3-Containing CaF2–CaO–Al2O3-Based Slag for Electroslag Remelting of Rotor Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The structure of 20 mass pct CaF2–CaO–Al2O3-based glasses with different SiO2 contents and BaO/CaO mass ratios were studied by Raman spectroscopy and MAS-NMR spectroscopy. Aluminum exists exclusively as AlIV species (mainly AlO4 and secondly AlO3F). The relative fractions of \({\text{Q}}_{\text{Si}}^{1}\), \({\text{Q}}_{\text{Si}}^{2}\text{(1Al)}\), \({\text{Q}}_{\text{Si}}^{2}\) and \({\text{Q}}_{\text{Si}}^{3}\) structural units significantly increase at the expense of \({\text{Q}}_{\text{Si}}^{0}\) species with increasing SiO2 content or BaO/CaO mass ratio, leading to enhanced polymerization of aluminosilicate networks. Boron is present in three-coordinated boron species (BIII), except for 1 to 2 pct of four-coordinated boron (BIV) in the glasses with 9.82 and 14.56 mass pct SiO2 or 8.62 mass pct BaO. BIII is mainly orthoborate containing zero bridging oxygen, and the others are pyroborate with one bridging oxygen. The relative fraction of orthoborate decreases and the relative fraction of pyroborate increases with increasing the SiO2 content or BaO/CaO mass ratio, bringing an increase in the polymerization of borates. The degree of polymerization of both aluminosilicate networks and borate networks increases with increasing the SiO2 content or BaO/CaO mass ratio. The viscosity of the slag increases with increasing the SiO2 content due to increased polymerization degree of the slag melts and bond strength of individual structural unit. The increase in the viscosity with increasing the BaO/CaO mass ratio is dominated by enhanced polymerization degree of the slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.T. Ba, J.J. Gao, S.B. Wang, and Q.H. Yang: Heavy Casting Forg., 2018, vol. 3, pp. 1–7.

    Google Scholar 

  2. C.B. Shi, H. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1675–89.

    Article  Google Scholar 

  3. C.B. Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2110–20.

    Article  Google Scholar 

  4. D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee: Proc. 2015 Int. Symp. Liq. Met. Process Casting, 2015, pp. 43–52

  5. S.J. Wang, C.B. Shi, Y.J. Liang, X.X. Wan, and X. Zhu: Metall. Mater. Trans. B, 2022, vol. 53, pp. 3095–3114.

    Article  CAS  Google Scholar 

  6. A. Plotkowski, J. de Barbadillo, and M.J.M. Krane: Mater. Sci. Technol., 2016, vol. 32, pp. 1249–63.

    Article  CAS  Google Scholar 

  7. Y.B. Li, J.X. Zhao, W.D. Tang, Y.M. Dang, S.T. Qiu, and Y.R. Cui: Special Steel, 2014, vol. 35, pp. 28–30. (in Chinese).

    Google Scholar 

  8. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 446–53.

    Article  CAS  Google Scholar 

  9. J. Sato, K. Iwanaga, A. Tomioka, K. Nishiguchi, H. Nakashima, and H. Ishida: Kobelco Technol. Rev., 2011, pp. 1–6.

  10. J. Fu, E. Chen, C. Chen, and Y. Wang: Acta Metall. Sin., 1981, vol. 17, pp. 394–402. (in Chinese).

    CAS  Google Scholar 

  11. A. Kharicha, E.K. Sibaki, M. Wu, and A. Ludwig: Proc. 2013 Int. Symp. Liq. Met. Process Casting, 2013, pp. 95–99.

  12. D. Xiao, W. Wang, and B. Lu: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 873–81.

    Article  Google Scholar 

  13. B. Lu and W. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 852–62.

    Article  Google Scholar 

  14. A. Goel, D.U. Tulyaganov, I.K. Goel, E.R. Shaaban, and J.M.F. Ferreira: J. Non-Cryst. Solids, 2009, vol. 355, pp. 193–202.

    Article  CAS  Google Scholar 

  15. A.K. Sahua, D. Kumar, O. Parkash, O.P. Thakur, and C. Prakash: Ceram. Int., 2004, vol. 30, pp. 477–83.

    Article  Google Scholar 

  16. K.C. Mills and B.J. Keene: Int. Met. Rev., 1981, vol. 9, pp. 21–69.

    Google Scholar 

  17. M.E. Fraser and A. Mitchell: Ironmak. Steelmak., 1976, vol. 3, pp. 279–87.

    CAS  Google Scholar 

  18. C.B. Shi, J.W. Cho, D.L. Zheng, and J. Li: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 627–36.

    Article  CAS  Google Scholar 

  19. C.R. Chang and J.H. Jean: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1725–32.

    Article  CAS  Google Scholar 

  20. F. Shahbazian, D. Sichen, and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 687–96.

    Article  CAS  Google Scholar 

  21. C.B. Shi, S. Shin, D.L. Zheng, J.W. Cho, and J. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3343–49.

    Article  Google Scholar 

  22. H. Zhang, Y. Peng, S. Zhang, C. Liu, R. Cheng, and H. Ni: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 702–15.

    Article  Google Scholar 

  23. E.Z. Gao, W.L. Wang, and L. Zhang: J. Non-Cryst. Solids, 2017, vol. 473, pp. 79–86.

    Article  CAS  Google Scholar 

  24. Z. Piao, L. Zhu, X. Wang, Z. Liu, B. Wang, P. Xiao, and Z. Yuan: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2119–30.

    Article  Google Scholar 

  25. H. Singh, Q.F. Shu, G. King, Z.Q. Liang, Z.F. Wang, W. Cao, M. Huttula, and T. Fabritius: J. Am. Ceram. Soc., 2021, vol. 104, pp. 4505–517.

    Article  CAS  Google Scholar 

  26. Z.Y. Jiao, B. Zhang, J.F. Qiao, Z.H. Zhang, and J.T. Ju: J. Iron. Steel. Res., 2013, vol. 25, pp. 29–34. (in Chinese).

    CAS  Google Scholar 

  27. C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 18–24.

    Article  CAS  Google Scholar 

  28. T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, and Y.J. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194–202.

    Article  CAS  Google Scholar 

  29. Z.J. Wang and I. Sohn: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4285–96.

    Article  CAS  Google Scholar 

  30. X.X. Wan, C.B. Shi, Y. Zhao, and J. Li: J. Non-Cryst. Solids, 2022, vol. 597, p. 121914.

    Article  CAS  Google Scholar 

  31. G.H. Kim, C.S. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170–76.

    Article  Google Scholar 

  32. J.L. Li, B.W. Kong, X.Y. Gao, Q.C. Liu, and K. Chou: Metall. Res. Technol., 2018, vol. 115, p. 304.

    Article  CAS  Google Scholar 

  33. G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 86–95.

    Article  Google Scholar 

  34. W.L. Konijnendijk and J.M. Stevels: J. Non-Cryst. Solids, 1976, vol. 20, pp. 193–224.

    Article  CAS  Google Scholar 

  35. D. Maniu, T. Iliescu, I. Ardelean, S. Cinta-Pinzaru, N. Tarcea, and W. Kiefer: J. Mol. Struct., 2003, vol. 651–653, pp. 485–88.

    Article  Google Scholar 

  36. B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690–710.

    CAS  Google Scholar 

  37. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622–44.

    CAS  Google Scholar 

  38. Q.F. Shu, P.F. Li, X. Zhang, and K. Chou: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3527–32.

    Article  Google Scholar 

  39. P. Mcmillan and B. Piriou: J. Non-Cryst. Solids, 1983, vol. 55, pp. 221–42.

    Article  CAS  Google Scholar 

  40. B.O. Mysen and J.D. Frantz: Am. Mineral., 1993, vol. 78, pp. 699–709.

    CAS  Google Scholar 

  41. B.N. Roy and A. Navrotsky: J. Am. Ceram. Soc., 1984, vol. 67, pp. 606–10.

    Article  CAS  Google Scholar 

  42. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima: ISIJ Int., 2011, vol. 51, pp. 1285–89.

    Article  CAS  Google Scholar 

  43. R.D. Shannon and C.T. Prewitt: Acta. Crystallogr., 2010, vol. 25, pp. 925–46.

    Article  Google Scholar 

  44. H.Y. Tian, Z.J. Wang, T. Zhao, and C. Wang: Metall. Mater. Trans. B, 2021, vol. 53B, pp. 232–41.

    Google Scholar 

  45. B.C. Bunker, R.J. Kirkpatrick, R.K. Brow, G.L. Turner, and C. Nelson: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1430–38.

    Article  CAS  Google Scholar 

  46. J. Yang, Y. Kim, and I. Sohn: J. Mater. Res. Technol., 2021, vol. 10, pp. 268–81.

    Article  CAS  Google Scholar 

  47. J.F. Stebbins, S. Kroeker, S.K. Lee, and T.J. Kiczenski: J. Non-Cryst. Solids, 2000, vol. 275, pp. 1–6.

    Article  CAS  Google Scholar 

  48. A. Stamboulis, R.G. Hill, and R.V. Law: J. Non-Cryst. Solids, 2004, vol. 333, pp. 101–07.

    Article  CAS  Google Scholar 

  49. J.X. Gao, G.H. Wen, T. Huang, B.W. Bai, P. Tang, and Q. Liu: J. Am. Ceram. Soc., 2016, vol. 99, pp. 1–7.

    Article  Google Scholar 

  50. J.S. Wu, T.M. Gross, L.P. Huang, S.P. Jaccani, R.E. Youngman, S.J. Rzoska, M. Bockowski, S. Bista, J.F. Stebbins, and M.M. Smedskjaer: J. Non-Cryst. Solids, 2020, vol. 530, p. 119797.

    Article  CAS  Google Scholar 

  51. J. Yang, Z. Wang, and I. Sohn: Acta Mater., 2022, vol. 234, p. 118014.

    Article  CAS  Google Scholar 

  52. D.R. Neuville, L. Cormier, and D. Massiot: Chem. Geol., 2006, vol. 229, pp. 173–85.

    Article  CAS  Google Scholar 

  53. J.L. Li, B.J. Yan, Q.F. Shu, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2458–69.

    Article  Google Scholar 

  54. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352–58.

    Article  CAS  Google Scholar 

  55. J.F. Stebbins: Nature, 1987, vol. 330, pp. 465–67.

    Article  CAS  Google Scholar 

  56. J.B. Murdoch, J.F. Stebbins, and I.S.E. Carmichael: Am. Mineral., 1985, vol. 70, pp. 332–43.

    CAS  Google Scholar 

  57. J.S. Wu and J.F. Stebbins: J. Non-Cryst. Solids, 2009, vol. 355, pp. 556–62.

    Article  CAS  Google Scholar 

  58. L.S. Du and J.F. Stebbins: J. Non-Cryst. Solids, 2005, vol. 351, pp. 3508–20.

    Article  CAS  Google Scholar 

  59. F. Angeli, T. Charpentier, D.D. Ligny, and C. Cailleteau: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2693–2704.

    Article  CAS  Google Scholar 

  60. Y.H. Yun and P.J. Bray: J. Non-Cryst. Solids, 1981, vol. 44, pp. 227–37.

    Article  CAS  Google Scholar 

  61. J.H. Zhong and P.J. Bray: J. Non-Cryst. Solids, 1989, vol. 111, pp. 67–76.

    Article  CAS  Google Scholar 

  62. L. Züchner, J.C. Chan, W. Müller-Warmuth, and H. Eckert: J. Phys. Chem. B, 1998, vol. 102, pp. 4495–4506.

    Article  Google Scholar 

  63. S. Kroeker and J.F. Stebbins: Inorg. Chem., 2001, vol. 40, pp. 6239–46.

    Article  CAS  Google Scholar 

  64. J. Yang and I. Sohn: J. Mater. Sci. Technol., 2022, vol. 131, pp. 195–203.

    Article  Google Scholar 

  65. J.R. Allwardt, S.K. Lee, and J.F. Stebbins: Am. Mineral., 2003, vol. 88, pp. 949–54.

    Article  CAS  Google Scholar 

  66. L.S. Du and J.F. Stebbins: Solid State Nucl. Magn. Reson., 2005, vol. 27, pp. 37–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 52074027, 51874026 and 52274314).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengbin Shi or Qifeng Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mnauscript submitted October 6, 2022; accepted December 3, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Shi, C., Huang, Y. et al. Effect of SiO2 and BaO/CaO Mass Ratio on Structure and Viscosity of B2O3-Containing CaF2–CaO–Al2O3-Based Slag for Electroslag Remelting of Rotor Steel. Metall Mater Trans B 54, 465–479 (2023). https://doi.org/10.1007/s11663-022-02706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02706-z

Navigation